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Abstract. Augmenting a base constraint model with additional con-
straints can strengthen the inferences made by a solver and therefore
reduce search effort. We focus on the automatic addition of streamliner
constraints, derived from the types present in an abstract Essence spec-
ification of a problem class of interest, which trade completeness for po-
tentially very significant reduction in search. The refinement of stream-
lined Essence specifications into constraint models suitable for input to
constraint solvers gives rise to a large number of modelling choices in
addition to those required for the base Essence specification. Previous
automated streamlining approaches have been limited in evaluating only
a single default model for each streamlined specification. In this paper
we explore the effect of model selection in the context of streamlined
specifications. We propose a new best-first search method that generates
a portfolio of Pareto Optimal streamliner-model combinations by evalu-
ating for each streamliner a portfolio of models to search and explore the
variability in performance and find the optimal model. Various forms
of racing are utilised to constrain the computational cost of training.
We demonstrate the approach’s effectiveness on the Balanced Academic
Curriculum Problem, which involves assigning periods to courses in a
way that the academic load of each period is balanced.

Keywords: Constraint Programming · Streamliners

1 Introduction

Adding streamliner constraints [20] to a model offers a powerful means to improve
the performance of a basic constraint model. Streamliners differ from implied
constraints [11,14,19], which are inferred from the original model, and symmetry-
breaking [18] and dominance-breaking constraints [38], both of which rule out
members of equivalence classes of solutions. Streamliners are conjectured rather
than inferred from the original model and are hence not guaranteed to be sound.
As a result they can very significantly alter the set of solutions to a problem
instance. A well chosen streamliner can substantially reduce search effort by
focusing search on promising regions of the search space containing at least one
solution.
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given n courses , n per iods , l o ad pe r p e r i od l b , l oad pe r pe r i od ub ,
c ou r s e s p e r p e r i o d l b , c ou r s e s p e r p e r i od ub : int ( 1 . . )

lett ing Course be domain int ( 1 . . n cour s e s ) ,
Period be domain int ( 1 . . n pe r i od s )

given p r e r e q u i s i t e : relation o f ( Course ∗ Course ) ,
c ou r s e l oad : function ( total ) Course −−> int ( 1 . . )

find curr : function ( total ) Course −−> Period

such that
forAll c1 , c2 : Course . p r e r e q u i s i t e ( c1 , c2 ) −> curr ( c1 ) < curr ( c2 ) ,
forAll p : Period .

(sum c in preImage ( curr , p ) . c ou r s e l oad ( c ) ) <= load pe r pe r i od ub
/\

(sum c in preImage ( curr , p ) . c ou r s e l oad ( c ) ) >= load pe r p e r i od l b ,
forAll p : Period .
|preImage ( curr , p ) | <= cou r s e s p e r p e r i od ub /\
|preImage ( curr , p ) | >= cou r s e s p e r p e r i o d l b

Fig. 1. Essence specification of the Balanced Academic Curriculum Problem [22]. The
goal is to design a balanced academic curriculum by assigning periods to courses in a
way that the academic load of each period is balanced, i.e., as similar as possible.

Streamliner generation was originally a laborious manual process, requiring
the manual inspection of small instances of a problem class to identify patterns
from which to derive candidate streamliners [28,30]. This approach was successful
in several domains, such as generating spatially-balanced experimental designs
[20] and finding improved bounds for the Erdos discrepancy problem [29].

More recently, it has been shown how this process can be automated to de-
rive candidate streamliners directly from the Essence specification of a problem
class of interest [40,41]. Essence [15–17] is an abstract constraint specification
language that allows a problem to be described directly in terms of the combina-
torial structure to be found, through support for abstract type constructors like
set, relation, function and partition, as well as arbitrary nesting of these, such
as set of multisets. Figure 1 presents the Essence specification of the Balanced
Academic Curriculum Problem (BACP), which we will use throughout. Here,
the problem involves finding a total function from courses to periods.

The structure apparent in an Essence specification drives a rule-based sys-
tem to suggest candidate streamliners, followed by a best-first search to identify
the most promising streamliners to apply in practice. For example one of the
streamliners automatically generated for BACP enforces that the Courses can
only be placed into even numbered Periods.

The existing work [40,41] uses the Conjure automated modelling system [3,
5] to refine a streamlined Essence specification into a constraint model for eval-
uation. This work is limited to accepting Conjure’s default choice for each of
the modelling decisions that need to be made, such as how to represent abstract
variables as constrained collections of more primitive variables, resulting in a
single streamlined model. The hypothesis that motivates the work in this paper
is that these default modelling choices are unlikely always to result in the most
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effective model, and that the best modelling choices may vary according to which
streamliner constraints are added to the original specification.

To test this hypothesis, we use Conjure to refine each streamlined specifica-
tion to a set of candidate models, each representing a different set of modelling
choices. We augment the best-first search to look for effective streamliner/model
pairs to build a portfolio of effective streamlined models for the problem class
under consideration. For an unseen instance from the problem class, a model
from the portfolio is automatically selected and deployed. For the BACP, our
empirical results demonstrate that this often results in a significant improvement
in performance over the existing method of focusing on a single default set of
modelling choices.

2 Candidate Streamliner Generation

An Essence specification like the one presented in Figure 1 comprises the prob-
lem class parameters (given); the combinatorial objects to be found (find); the
constraints the objects must satisfy (such that); identifiers declared (letting);
and an optional objective function (min/maximising).

The highly structured problem description an Essence specification provides
is better suited to streamliner generation than a lower level representation, such
as MiniZinc [33] or Essence Prime [36]. This is because abstract types like
function or partition and nested types like multiset of sets must be represented
as a constrained collection of more primitive variables in a constraint model,
obscuring the structure used to drive streamliner generation.

We employ the same set of streamliner generation rules as [40, 41]. These
rules are generic, developed around the structured abstract types provided by
Essence. The subset that are applicable to the BACP is summarised in Table 1.
Higher-order rules take another rule as an argument and lift its operation onto a
decision variable with a nested domain such as the function present in the BACP.
This allows for the generation of a rule that enforces that half of the Courses
are assigned to Periods drawn from the lower-half of the Periods domain.

Class Trigger Domain Name

First-order
int odd{even}, lower{upper}Half

function int --> int
monotonicIncreasing{Decreasing}

largest{smallest}First{Last}

Higher-order
set of X all, most∗, half, approxHalf∗

function X --> Y
range, defined

pre{post}fix∗, allBut∗

Table 1. The subset of rules used to generate streamliners for BACP. The ones with
a softness parameter specify a family of rules each member of which is defined by an
integer parameter, and are marked with ∗. Note that the defined and range operators
return sets, and the higher order rules that operate on sets are applicable to these sets.
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3 From Essence Specifications to Constraint Models

Essence specifications cannot be solved directly by systematic constraint solvers,
which lack support for abstract types such as functions and partitions, and nested
types. Hence, an Essence specification must be refined into a constraint model
where these types, and the constraints on them, are modelled in terms of the
target constraint language. The automated modelling tool Conjure [1, 4] re-
fines Essence specifications into constraint models in the solver-independent
constraint language Essence Prime [34, 36].

There are typically many alternative models of an Essence specification,
corresponding to alternative modelling choices for the abstract types, and the
constraints upon them, present in the specification. Different models can exhibit
significantly different performance behaviour, which can also vary according to
the particular instance of the problem class modelled. Conjure is able to enu-
merate models of an Essence specification by applying the different refinement
rules corresponding to the possible modelling choices.

We use the BACP (Figure 1) to illustrate how Conjure produces alternative
models. This specification has one find statement with a function domain: curr.
This can be modelled in four different ways in the current version of Conjure.
As this is a total function the first representation uses a 1-D matrix matrix
indexed by [int(1..n courses)] of int(1..n periods). The second model
represents the function as a total relation. It utilises a 2-D matrix of Booleans
matrix indexed by [int(1..n courses), int(1..n periods)] of bool. An
alternative interpretation models the function as a binary relation first, followed
by modelling the relation in two different ways. Both representations use two
integer matrices matrix indexed by [int(1..n courses * n periods)] of
int(1..n courses)] for each component of the relation. They differ in how they
represent the cardinality of the function, one using a single integer marker and
the other one using a Boolean matrix as flags to denote whether the value is in
the relation.

From this one find statement there are four possible base representations.
However, Conjure also has to model other types of objects such as given pa-
rameters, auxiliary variables and quantified variables each of which could have
multiple different representations. Conjure also has the ability to implement
automated channelling [12] in which each reference to a variable in a constraint
expression can be modelled differently. Each of these components increases the
number of modelling choices and as a result a single abstract Essence speci-
fication can typically be refined into a large number of constraint models. Fig-
ure 2 shows for the number of candidate models of BACP on the unstreamlined
Essence and how this changes with the introduction of streamliner constraints.
Over 16,384 different models can be generated for the unstreamlined specification
alone and with the additional modelling choices streamliners radically increase
this number. Even though a large number of these models are small modifica-
tions of other models, some models are significantly different from others and
they have very different performance characteristics. Moreover, different models
are also likely to benefit from the addition of streamliner constraints differently.
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Fig. 2. The number of models (log10) refined from the original Essence specification
and with a sample set of single candidate streamliners for BACP. The streamliners are
represented in Conjure via numeric values which are presented.

In existing work [40, 41] this choice is handled by utilising the default
heuristic of Conjure. This is a heuristic employed during refinement to commit
greedily to promising modelling choices at each point where an abstract type
or a constraint expression may be refined in multiple ways [3]. The default
heuristic is a combination of two other heuristics: compact for decision vari-
ables and constraint expressions and Sparse for parameters. compact favours
transformations that produce smaller expressions. For an abstract type, we de-
fine an ordering as follows: concrete domains (such as bool, matrix) are smaller
than abstract domains; within concrete domains, bool is smaller than int and
int is smaller than matrix. Abstract type constructors have the ordering set <
multiset (mset) < function < relation < partition. These rules are applied recur-
sively so that compact will select the smallest domain according to this order.
The Sparse heuristic is designed to choose the domain representations that will
generate the smallest Essence Prime parameter files for sparse objects. Some
representations represent every potential member of a domain explicitly whereas
some representations only represent the actual members of a domain.

Figure 3 shows the performance of streamlined models for BACP across 8
different models with two example streamliners. Streamliner 3 enforces that the
smallest integer courses must be assigned to the smallest integer periods, while
Streamliner 10 enforces that half of the courses must be placed in even numbered
periods. Results in Figure 3 indicates that there can be a large variability in
the streamliner performance across different model representations. Moreover,
the default heuristic may not always provide the best performance, as for
streamliner 10 the default model is only able to achieve around a 20% reduction
in time, far inferior to the 60% reduction achieved by the best model. It is
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also interesting to note that the best model representation is highly streamliner
dependent and changes between streamliner 10 and streamliner 3.

Fig. 3. Performance of two example streamliners across 8 models for BACP. Each
model is named with respect to the generating heuristic (table 2)

4 Model Portfolios

As seen from Figure 2 the number of possible models that can be refined, es-
pecially from a streamlined specification, means that refining and evaluating all
possible models for each streamliner is not feasible. Instead, a sample of N mod-
els can be evaluated where N is controlled to balance the computational cost
against the exploratory benefit. Conjure allows for the customisation of the
modelling process in several ways. First, different strategies can be employed
for the modelling of different types of objects. A distinction can be made among
four different forms of declarations, {find, given, auxiliary, quantified} depending
upon their origin in the specification. find and given statements define decision
variables and problem parameters, auxiliaries are decision variables created by
Conjure during model reformulation, and quantified variables are defined by
quantified expressions like forAll, exists and sum. Second, automated chan-
nelling and precedence levels can be activated and deactivated to further cus-
tomise the modelling heuristic. To produce a portfolio of N models we use a
set of heuristics, as listed in Table 2, ranked based on the predicted number of
generated models and our perceived effectiveness of the generated models. These
heuristics are then invoked in an iterative fashion until a portfolio of N models
has been generated.
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Rank Heuristic
Declaration Type Additional Flags

Find Given Auxiliaries Quantifieds Channelling Levels

1 Default Compact Sparse Compact Compact False True

2 Compact Compact Compact Compact Compact False True

3 Sparse Sparse Sparse Sparse Sparse False True

4 nochPrunedLevels All Sparse Compact Compact False True

5 nochAllLevels All Sparse Compact Compact False False

6 chPrunedLevels All Sparse Compact Compact True True

7 chAllLevels All Sparse Compact Compact True False

8 fullPrunedLevels All Sparse All All True True

9 fullAllLevels All Sparse All All True False

10 fullParamsPrunedLevels All All All All True True

11 fullParamsAllLevels All All All All True False

Table 2. The ranked set of heuristics we use when generating a portfolio of models.

5 Searching for Streamlined Model Portfolios

5.1 Multi-Objective Monte Carlo Tree Search

Candidate streamliners are often most effectively used in combination [20], form-
ing a lattice of possible combinations [43], and therefore a search allowing good
combinations to be identified efficiently is desirable. In reality, streamliner gener-
ation has two conflicting goals: to uncover constraints that steer search towards
a small and highly structured area of the search space that yields a solution,
versus identifying streamliner constraints in training that remain applicable to
more difficult instances of the problem class.

To address these two objectives we employ a multi-objective optimisation
approach, where each point x in the search space X is associated with a 2-
dimensional reward vector rx in R2. Our two objectives allow us explicitly
to balance considerations of average applicability against how aggressively the
streamlined version of each candidate model reduces search: (i) Applicability -
the proportion of training instances for which the streamlined model admits a
solution. (ii) Search Reduction - the mean reduction in time to find a solution in
comparison with an unstreamlined model. All objectives are transformed such
that they can be maximised. With these two objectives for each streamliner com-
bination, the Pareto dominance partial ordering � on R2 is defined as follows.
Given x, y ∈ X with vectorial rewards rx = 〈r1x, r2x〉 and ry = 〈r1y, r2y〉:

rx � ry ⇐⇒ (∀i ∈ [1, 2], rix ≥ riy) ∧ (∃j ∈ [1, 2], rjx > rjy) (1)

To search the lattice structure for a portfolio of Pareto optimal streamlined
models we have adapted the Dominance-based Multi-Objective Monte Carlo Tree
Search (MOMCTS-DOM) algorithm [42]. The algorithm has four phases:

1. Selection: Starting at the root node, the Upper Confidence Bound applied
to Trees (UCT) [8] policy is applied to traverse the explored part of the
lattice until an unexpanded node is reached.

2. Expansion: Uniformly select and expand an admissible child.
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3. Simulation: For each of a portfolio of N models the collection of streamlin-
ers associated with the expanded node are evaluated. The vectorial reward
〈Applicablity, Search Reduction〉 across the set of training instances is cal-
culated and returned.

4. BackPropagation: The current portfolio, which contains the set of non
dominated streamliner/model combinations found up to this point during
search, is used to compute Pareto dominance. The reward values of the
Pareto dominance test are non stationary since they depend on the portfo-
lio, which evolves during search. Hence, we use the cumulative discounted
dominance (CDD) [42] reward mechanism during reward update.

5.2 Training Set Construction

It is necessary to have a training set with which to evaluate the streamliner
candidates. We use the automated instance generation system proposed in [2] to
generate several satisfiable instances, solvable in a time limit of [10s, 300s]. Start-
ing from an Essence specification of a problem class, instances can be generated
in a completely automated fashion. Ideally the training set should be diverse
and representative of the problem class as a whole, otherwise the streamliner
portfolio may not generalise. Hence, three different instance generation runs per
problem class are performed to ensure diversity. Instance-specific features are
used to judge instance similarity and GMeans clustering [21] is employed to
detect the number of instance clusters present. Instances are then selected per
cluster to build a representative training set. For instance features, we use the
95 FlatZinc features provided by the fzn2feat tool (part of mzn2feat [6]).

5.3 Multi-Round Search

One issue with the search method presented thus far is that because of the dom-
ination criteria used the resultant portfolio may still be sub-optimal. A stream-
liner/model combination that has poor average performance across all instances
it covers may still be useful, as it might provide very high solving-time reduction
within a subset of those instances. However, this information is not considered
in the current dominance criteria, and will be discarded.

In order to solve this issue, we adapt our search to incorporate the ideas
of Hydra [44], a portfolio builder approach that automatically builds a set of
solvers or parameter configurations of solvers with complementary strengths.
Instead of performing one lattice search and building one portfolio, we now
perform multiple rounds of search. In the first, a normal MOMCTS-DOM is
conducted. From the second round onward, the best solving time on each instance
obtained from the portfolio created in previous rounds is recorded. Performance
of a streamliner/model combination on an instance in the current round is then
measured relative to the previously recorded best solving time on that instance.
This mechanism allows the portfolio built in the current round to complement
the strengths of the combined portfolios built in the prior rounds.
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6 Model Racing

Evaluating all candidate models for each considered streamliner combination is
expensive. Poorly-performing streamliner/model combinations can timeout on
several instances and consume a large amount of the training budget. Hence, we
employ various racing techniques [3,7,9,25] to terminate poorly-performing com-
binations early. The streamliner search can then allocate more time to evaluate
promising streamliners and gain a more accurate estimation of their performance.

Racing is performed at each lattice node of the search, representing a combi-
nation of streamliners. We race among the multiple models generated by Con-
jure on the given streamliner combination, and try to eliminate the poorly per-
forming models without having to fully evaluate them. We first describe the three
racing strategies we used, ρ-Capping [3], racing based on statistical tests [7, 32]
and adaptive capping [25] and then discuss how they are combined together in
our streamliner search through a multi-level model generation approach.

6.1 ρ-Capping

We conduct a race across multiple models for each training instance. Given a
parameter ρ ≥ 1, a model is ρ-dominated [3] on an instance by another model if
the solving time of the latter is at least ρ times faster on the given instance. All
models enter each race, but a model is terminated as soon as it is ρ−dominated
by some other model. Hence, the running time of a model on an instance is capped
by ρ times the best solving time of all models in the race. In our experiments ρ
is set as 2.

6.2 Racing using statistical tests

Racing using statistical tests for the automated configuration of parameterised
algorithms [23] was first proposed in [7], and later extended and implemented
in the automated algorithm configuration tool irace [32]. Bad algorithm con-
figurations are discarded from a race as soon as sufficient statistical evidence is
observed. We apply the same idea to remove bad models early during a race.

At the beginning of a race, all models generated by Conjure at the current
lattice node are evaluated on a number of instances, denoted by Tfirst, and their
solving times are measured. The model with the best average solving time on
those instances is identified, and a paired Student t-test (with a significance level
of 0.05) between that model and each of the other models is conducted. The Bon-
ferroni correction is used for adjusting the multiple-comparison statistical tests.
Models showing statistically significantly worse performance than the current
best-average one are eliminated. The survivors continue to be evaluated on an
additional number of Tnext instances before a new best model is calculated and
statistical tests are applied again. This is repeated until all training instances
are examined. We use irace’s default values for Tfirst (10) and Tnext (5).
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6.3 Adaptive Capping

Adaptive capping is another technique in automated algorithm configuration
to terminate poorly-performing algorithm configurations early when optimising
running time of a parameterised algorithm. It was first proposed in the local
search-based automated algorithm configuration tool ParamILS [25], and was
later integrated into irace [9]. The technique has been shown to significantly
speed up the search for the best algorithm configurations in many cases [9,24,25].
Our streamliner search makes use of the adaptive capping mechanism of irace.

The main idea is to reduce the time wasted in the evaluation of poorly per-
forming models in the current race by enforcing an upper bound on their running
time. Bounds are calculated based upon a set of elite models (best-performing
models) obtained from a previous race. More specifically, let M denote a set
of candidate models in the current race, I = {i1, i2, .., in} a set of instances,
ME a set of elite models and pmk the average solving time of a model m on the
instance subset {i1, i2, .., ik} (k ≤ n). Given the fact that we already know the
values of pme

k for all me ∈ME and k ≤ n from the previous race, the maximum
running time bmk+1 (k < n) for a model m ∈M on instance ik+1 is calculated as:
medianme∈ME

{pme

k+1} ∗ (k + 1) − pmk ∗ k. This bound can be thought of as the
minimum performance a current model must achieve on an instance subset to
be competitive with the elites up to that point. If the running time of a model
ever exceeds the calculated bound, it is eliminated from the race. As the bound
for an instance is calculated based upon the time taken on preceding instances,
adaptive capping can be sensitive to the ordering of the instance set I. Therefore,
the training instance set is shuffled at the beginning of every race.

6.4 Multi-Level Model Generation

At each lattice node of the streamliner search, the three forms of racing are
combined in a multi-level model generation approach. On each level, a portfolio
of models is generated and a new race is started. The size of the portfolio is
doubled with each level and the model set created is a strict superset of the
models in any preceding level. On the first level a single model is generated
(default model) and is evaluated on the whole training set. Since it is currently
the only model, it becomes an elite for the subsequent level. The second level is
then started with a portfolio of size 2, containing default and a newly created
model. On this level all three racing techniques are utilized to eliminate poorly
performing models. Adaptive capping will make use of the elite models from the
preceding level to calculate its bound and perform its elimination. Any results
from previous levels that have already been calculated are cached and reused. In
our experiments, we allow a maximum of four levels, which results in a maximum
number of 8 streamlined models at each lattice node.

Iterative deepening of the portfolio size allows us to initially evaluate the
models that we believe are most likely to perform best based upon the ranking
in Table 2. The use of elite models derived from previous levels helps the adap-
tive capping mechanism to speed up the evaluations in the next levels substan-
tially. This allows the search to explore larger portfolio sizes within a reasonable
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amount of time. It is especially useful where the truly best model for a particular
streamliner combination is actually located in a lower ranked heuristic.

7 Streamliner/Model Selection

The generated portfolio for a problem class contains streamliner/model com-
binations with complementary strengths. For an unseen instance the question
arises as to which streamlined model should be used. This is a common situation
in many AI domains. Algorithm Selection [39] uses instance characteristics to se-
lect from a set of algorithms the ones expected to solve a given problem instance
most efficiently, and has been shown empirically to improve the state-of-the-art
in several domains [26, 27]. We exploit existing Algorithm Selection techniques
to effectively select from our streamliner portfolios for unseen test instances.

We use Autofolio [31], an automatically self-configured algorithm selection
framework. Given a particular problem instance the goal is to have Autofolio pre-
dict, based upon the features of the instance, which streamlined models from the
generated portfolio will most efficiently solve the instance. For instance features,
we again use the FlatZinc features provided by the fzn2feat tool [6]. Autofolio
also supports a pre-solving schedule, a static schedule built from a small subset
of streamlined models. This schedule is run for a small amount of time. If it
fails to solve an instance, the model chosen by the prediction model is applied.
Autofolio chooses whether to use a pre-solving schedule during its tuning phase.
For each problem class, Autofolio was run ten times in tuning mode with a one
day CPU budget. 10-fold cross validation was used on the training sets and the
model with the best average cross-validation score was used for prediction.

8 Experimental Results

Experiments were run on a cluster of 280 nodes, each with two 2.1 GHz, 18-core
Intel Xeon E5-2695 processors. MOMCTS-DOM was run with leaf parallelisa-
tion [10] using up to 30 cores with a maximum budget of 4 wall-time days per
problem class. Difficult test instances, with solving time in [300s, 3600s], were
generated automatically using the same instance generation system [2] used for
training instance construction. We will show that although the portfolios of
streamlined models are trained on easy instances (solved in [10s, 300s]), their
large improvement in solving time transfers to difficult, unseen test instances.

Previous automated streamlining approaches have been limited to using only
a single default model for each streamlined specification. To demonstrate the
positive impact of adding multiple-model exploration during streamliner search,
two independent searches were conducted for each problem class: one with the
single default model, and one with the multiple-model approach proposed in
this paper. The generated portfolio of streamlined models from each search was
then given to Autofolio to build a streamlined-model selector using a set of
training instances. Performance of each streamliner search is measured as the
performance of the selector over the test instances. Both searches were given
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the same training time budget for a fair comparison. Our hypothesis is that
even though each round of a multiple-model search is generally more expensive
than its single-model counterpart, the opportunity of exploring multiple models
and our enhanced search method using model-racing will be able to produce
higher-quality portfolios of streamlined models within the same time budget.

The CP learning solver Chuffed [13] was used with its default parameter
setting as the target solver. Each streamlined model was generated by Conjure
and further tailored for the target solver by Savile Row [35,37]. Savile Row
was also used to produce the FlatZinc inputs for the fzn2feat feature extraction
tool.

The evaluation of a test instance proceeds as follows: Initially the features are
extracted (by fzn2feat) and used by Autofolio to predict the best streamliner
for that part of the instance space. The selected streamliner is then evaluated
for a maximum time period of one hour. As streamliners are not necessarily
sound and no Algorithm Selection system is perfect in its predictions there is
no guarantee that the streamliner will find a solution and can either time out
or be proven unsatisfiable by the solver. In either case after the streamliner is
finished we revert back to running the original model until a solution is found.
The overall time for a streamliner is then calculated as follows:

TotalT ime =

{
SAT: streamlined solving time

UNSAT/timeout: streamlined + original model solving time

Table 3 shows our experimental results of the single-model and multiple-
model settings on the 25 difficult test instances generated. We report results of
Autofolio and the Virtual Best Solver (VBS) for each setting using three mea-
surements. %imp and %red represent the percentage of test instances where the
solving time is improved by adding streamliners and the average solving-time
reduction percentage on those improved instances respectively. speedup is calcu-
lated as the average solving time of the original model divided by the average
streamlined TotalTime across all test instances.

Experiment #inst
VBS Autofolio

%imp %red speedup %imp %red speedup

BACP (D) 25 92.0 95.06 8.31 72.0 96.0 1.23
BACP (MM) 25 96.0 98.7 14.6 92.0 92.0 3.6

Table 3. Results of the Virtual Best Solver (VBS) and Autofolio on 25 test instances
for BACP, under the default model setting (D) and the multi-model (MM) setting.
%imp and %red represent the percentage of test instances where the solving time is
reduced by adding streamliners and the average solving-time reduction percentage
on those improved instances respectively. speedup represents the relative performance
between the average solving time of the unstreamlined model in comparison to the two
streamlined approaches.
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Both streamlined approaches provide large improvement in solving time to
the original unstreamlined model. Compared to the single-model approach, the
multi-model search results in higher percentages of instances with improvement
in search time (%imp) and higher speedup values. These results are achieved both
on the VBS and with Autofolio which shows that the multi-model portfolios not
only performing better in theory (VBS) but also that these theoretical gains can
substantially be realised in practice by an Algorithm Selector (Autofolio).

Figure 4 presents the composition of the portfolio of models produced for
BACP. It is immediately apparent that Conjure’s default heuristic, which
is the only one employed in previous work [40], is not the one mostly used by
the portfolio. In what follows we discuss the composition the portfolio in more
details and its connection to the performance improvement observed.
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Fig. 4. Composition of the portfolio generated by our multi-model search for BACP.
The x-axis represents heuristic rules (Table 2) used by Conjure. The y-axis shows
the number of streamlined models in the portfolio generated by the corresponding
heuristics rules. Note that models refined according to the same set of rules can still
differ due to the additional modelling choices introduced by the added streamliners.

The generated portfolio is comprised of various models generated from five
different heuristics. Some models have both channelling and precedence levels
for representations enabled whereas others have both disabled. Those modelling
choices interact with the candidate streamliners and enable efficient propagation
during the search, leading to the improvement in all performance measurements
as shown in Table 3.

To give a concrete example Streamliner 1 in BACP enforces that the curr
function is monotonically increasing. For this streamliner the best model en-
ables channelling. The default model chooses only one representation for the
curr function matrix indexed by [int(1..n courses)] of int(1..n periods)
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whereas in the dominating model a second representation is also used matrix
indexed by [int(1..n courses), int(1..n periods)] of bool and Conjure
will automatically add channelling constraints between these two representa-
tions. Having these two representations present in the model makes a large
difference in the reduction achieved by Streamliner 1. Another example is for
Streamliner 10 which restricts half of the values of the range of the curr func-
tion to be even. In this case, representing the function as a 2-dimensional Boolean
matrix (as above) instead of a 1-dimensional integer matrix allows the stream-
liner to again achieve a higher overall average reduction.

9 Conclusion

We have demonstrated that searching for the right model to pair with a stream-
liner can improve performance significantly over a fixed, default model using a
case study with the Balanced Academic Curriculum Problem. Racing can be
used to constrain the computational search cost by removing inferior models
early. We have also shown for the first time that Algorithm Selection tools can
be used to effectively select streamliners on a per-instance basis. Future work is
to extend the experiments to other problems, to increase selection performance
to close the gap on the VBS, and to investigate additional modelling choices
such as when and how it is beneficial to encode streamliners to different repre-
sentations such as SAT or SMT.
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